228 research outputs found

    Renal artery stenosis-when to screen, what to stent?

    Get PDF
    Renal artery stensosis (RAS) continues to be a problem for clinicians, with no clear consensus on how to investigate and assess the clinical significance of stenotic lesions and manage the findings. RAS caused by fibromuscular dysplasia is probably commoner than previously appreciated, should be actively looked for in younger hypertensive patients and can be managed successfully with angioplasty. Atheromatous RAS is associated with increased incidence of cardiovascular events and increased cardiovascular mortality, and is likely to be seen with increasing frequency. Evidence from large clinical trials has led clinicians away from recommending interventional revascularisation towards aggressive medical management. There is now interest in looking more closely at patient selection for intervention, with focus on intervening only in patients with the highest-risk presentations such as flash pulmonary oedema, rapidly declining renal function and severe resistant hypertension. The potential benefits in terms of improving hard cardiovascular outcomes may outweigh the risks of intervention in this group, and further research is needed

    Guillain-Barré syndrome: a century of progress

    Get PDF
    In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS

    Role of NADPH Oxidase versus Neutrophil Proteases in Antimicrobial Host Defense

    Get PDF
    NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates (ROIs), suffer from life-threatening bacterial and fungal infections. The mechanisms by which NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47phox−/−) were highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase (NE)−/−×cathepsin G (CG)−/− mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI)-deficient mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47phox−/− mice, whereas NE−/−×CG−/− mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against specific pathogens

    Depression after low-energy fracture in older women predicts future falls: a prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls are one of the main causes of fractures in elderly people and after a recent fracture, the risk of another fall is increased, resulting in subsequent fracture. Therefore, risk factors for future falls should be determined. We prospectively investigated the relationship between depression and the incidence of falls in post-menopausal women after a low-energy fracture.</p> <p>Methods</p> <p>At baseline, 181 women aged 60 years and older who presented with a recent low-energy fracture were evaluated at the fracture and osteoporosis outpatient clinics of two hospitals. As well as clinical evaluation and bone mineral density tests, the presence of depression (measured using the Edinburgh Depression Scale, EDS, depression cut-off > 11) and risk factors for falling were assessed. During two years of follow-up, the incidence of falls was registered annually by means of detailed questionnaires and interviews.</p> <p>Results</p> <p>Seventy-nine (44%) of the women sustained at least one fall during follow-up. Of these, 28% (<it>n </it>= 22) suffered from depression at baseline compared to 10% (<it>n </it>= 10) of the 102 women who did not sustain a fall during follow-up (<it>Χ</it><sup>2 </sup>= 8.76, df = 1, <it>p </it>= .003). Multiple logistic regression showed that the presence of depression and co-morbidity at baseline were independently related to falls (OR = 4.13, 95% CI = 1.58-10.80; OR = 2.25, 95% CI = 1.11-4.56, respectively) during follow-up.</p> <p>Conclusions</p> <p>The presence of depression in women aged 60 years and older with recent low-energy fractures is an important risk factor for future falls. We propose that clinicians treating patients with recent low-energy fractures should anticipate not only on skeletal-related risk factors for fractures, but also on fall-related risk factors including depression.</p

    Re-Annotation Is an Essential Step in Systems Biology Modeling of Functional Genomics Data

    Get PDF
    One motivation of systems biology research is to understand gene functions and interactions from functional genomics data such as that derived from microarrays. Up-to-date structural and functional annotations of genes are an essential foundation of systems biology modeling. We propose that the first essential step in any systems biology modeling of functional genomics data, especially for species with recently sequenced genomes, is gene structural and functional re-annotation. To demonstrate the impact of such re-annotation, we structurally and functionally re-annotated a microarray developed, and previously used, as a tool for disease research. We quantified the impact of this re-annotation on the array based on the total numbers of structural- and functional-annotations, the Gene Annotation Quality (GAQ) score, and canonical pathway coverage. We next quantified the impact of re-annotation on systems biology modeling using a previously published experiment that used this microarray. We show that re-annotation improves the quantity and quality of structural- and functional-annotations, allows a more comprehensive Gene Ontology based modeling, and improves pathway coverage for both the whole array and a differentially expressed mRNA subset. Our results also demonstrate that re-annotation can result in a different knowledge outcome derived from previous published research findings. We propose that, because of this, re-annotation should be considered to be an essential first step for deriving value from functional genomics data

    Implication of long-distance regulation of the HOXA cluster in a patient with postaxial polydactyly

    Get PDF
    Apparently balanced chromosomal inversions may lead to disruption of developmentally important genes at the breakpoints of the inversion, causing congenital malformations. Characterization of such inversions may therefore lead to new insights in human development. Here, we report on a de novo inversion of chromosome 7 (p15.2q36.3) in a patient with postaxial polysyndactyly. The breakpoints do not disrupt likely candidate genes for the limb phenotype observed in the patient. However, on the p-arm the breakpoint separates the HOXA cluster from a gene desert containing several conserved noncoding elements, suggesting that a disruption of a cis-regulatory circuit of the HOXA cluster could be the underlying cause of the phenotype in this patient

    Health status in non-dystrophic myotonias: close relation with pain and fatigue

    Get PDF
    To determine self-reported health status in non-dystrophic myotonias (NDM) and its relationship to painful myotonia and fatigue. In a cross-sectional study, 32 NDM patients with chloride and 30 with sodium channelopathies, all off treatment, completed a standardised interview, the fatigue assessment scale (FAS), and the 36-item Short-Form Health Survey (SF-36). Beside formal assessment of pain, assessment of painful or painless myotonia was determined. The domain scores of the SF-36 were compared with Dutch community scores. Apart from the relationship among SF-36 scores and (1) painful myotonia and (2) fatigue, regression analyses in both NDM groups were conducted to determine the strongest determinants of the SF-36 domains general health perception, physical component (PCS) and mental component summary (MCS). All physically oriented SF-36 domains in both NDM groups (P ≤ 0.01) and social functioning in the patients with sodium channelopathies (P = 0.048) were substantially lower relative to the Dutch community scores. The patients with painful myotonia (41.9%) scored substantially (P < 0.05) lower on most SF-36 domains than the patients without painful myotonia (58.1%). Fatigued patients (53.2%) scored substantially lower (P ≤ 0.01) on all SF-36 domains than their non-fatigued counterparts (46.8%). The regression analysis showed that fatigue was the strongest predictor for the general-health perception and painful myotonia for the physical-component summary. None of the patients showed below-norm scores on the domain mental-component summary. The impact of NDM on the physical domains of patients’ health status is substantial, and particularly painful myotonia and fatigue tend to impede their physical functioning

    P67-phox (NCF2) Lacking Exons 11 and 12 Is Functionally Active and Leads to an Extremely Late Diagnosis of Chronic Granulomatous Disease (CGD)

    Get PDF
    Two brothers in their fifties presented with a medical history of suspected fungal allergy, allergic bronchopulmonary aspergillosis, alveolitis, and invasive aspergillosis and pulmonary fistula, respectively. Eventually, after a delay of 50 years, chronic granulomatous disease (CGD) was diagnosed in the index patient. We found a new splice mutation in the NCF2 (p67-phox) gene, c.1000+2T→G, that led to several splice products one of which lacked exons 11 and 12. This deletion was in frame and allowed for remarkable residual NADPH oxidase activity as determined by transduction experiments using a retroviral vector. We conclude that p67-phox which lacks the 34 amino acids encoded by the two exons can still exert considerable functional activity. This activity can partially explain the long-term survival of the patients without adequate diagnosis and treatment, but could not prevent progressing lung damage

    Genetic Determinants of Electrocardiographic P-Wave Duration and Relation to Atrial Fibrillation

    Get PDF
    Background: The P-wave duration (PWD) is an electrocardiographic measurement that represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with atrial fibrillation (AF). We used exome-chip data to examine the associations between common and rare variants with PWD. / Methods: Fifteen studies comprising 64 440 individuals (56 943 European, 5681 African, 1186 Hispanic, 630 Asian) and ≈230 000 variants were used to examine associations with maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for common variants; gene-based burden and sequence kernel association tests examined low-frequency variant-PWD associations. Additionally, we examined the associations between PWD loci and AF using previous AF genome-wide association studies. / Results: We identified 21 common and low-frequency genetic loci (14 novel) associated with maximum PWD, including several AF loci (TTN, CAND2, SCN10A, PITX2, CAV1, SYNPO2L, SOX5, TBX5, MYH6, RPL3L). The top variants at known sarcomere genes (TTN, MYH6) were associated with longer PWD and increased AF risk. However, top variants at other loci (eg, PITX2 and SCN10A) were associated with longer PWD but lower AF risk. / Conclusions: Our results highlight multiple novel genetic loci associated with PWD, and underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an endophenotype for several different genetic mechanisms of AF
    corecore